Fotosintesis (dari bahasa Yunani φώτο- [fó̱to-], "cahaya," dan σύνθεσις [sýnthesis], "menggabungkan", "penggabungan") adalah suatu proses biokimia pembentukan zat makanan karbohidrat yang dilakukan oleh tumbuhan, terutama tumbuhan yang mengandung zat hijau daun atau klorofil. Selain tumbuhan berklorofil, makhluk hidup non-klorofil lain yang berfotosintesis adalah alga dan beberapa jenis bakteri. Organisme ini berfotosintesis dengan menggunakan zat hara, karbon dioksida, dan air serta bantuan energi cahaya matahari.
Organisme fotosintesis disebut fotoautotrof karena mereka dapat membuat makanannya sendiri. Pada tanaman, alga, dan cyanobacteria, fotosintesis dilakukan dengan memanfaatkan karbondioksida dan air serta menghasilkan produk buanganoksigen. Fotosintesis sangat penting bagi semua kehidupan aerobik di Bumi karena selain untuk menjaga tingkat normal oksigen di atmosfer, fotosintesis juga merupakan sumber energi bagi hampir semua kehidupan di Bumi, baik secara langsung (melaluiproduksi primer) maupun tidak langsung (sebagai sumber utama energi dalam makanan mereka), kecuali pada organisme kemoautotrof yang hidup di bebatuan atau di lubang angin hidrotermal di laut yang dalam. Tingkat penyerapan energi oleh fotosintesis sangat tinggi, yaitu sekitar 100 terawatt, atau kira-kira enam kali lebih besar daripada konsumsi energi peradaban manusia. Selain energi, fotosintesis juga menjadi sumber karbon bagi semua senyawa organik dalam tubuh organisme. Fotosintesis mengubah sekitar 100–115 petagram karbon menjadi biomassa setiap tahunnya.
Meskipun fotosintesis dapat berlangsung dalam berbagai cara pada berbagai spesies, beberapa cirinya selalu sama. Misalnya, prosesnya selalu dimulai dengan energi cahaya diserap oleh protein berklorofil yang disebut pusat reaksi fotosintesis. Pada tumbuhan, protein ini tersimpan di dalam organel yang disebut kloroplas, sedangkan pada bakteri, protein ini tersimpan pada membran plasma. Sebagian dari energi cahaya yang dikumpulkan oleh klorofil disimpan dalam bentuk adenosin trifosfat (ATP). Sisa energinya digunakan untuk memisahkan elektron dari zat seperti air. Elektron ini digunakan dalam reaksi yang mengubah karbondioksia menjadi senyawa organik. Pada tumbuhan, alga, dan cyanobacteria, ini dilakukan dalam suatu rangkaian reaksi yang disebut siklus Calvin, namun rangkaian reaksi yang berbeda ditemukan pada beberapa bakteri, misalnya siklus Krebs terbalik pada Chlorobium. Banyak organisme fotosintesis memiliki adaptasi yang mengonsentrasikan atau menyimpan karbondioksida. Ini membantu mengurangi proses boros yang disebut fotorespirasi yang dapat menghabiskan sebagian dari gula yang dihasilkan selama fotosintesis.
Organisme fotosintesis pertama kemungkinan berevolusi sekitar 3.500 juta tahun silam, pada masa awal sejarah evolusi kehidupanketika semua bentuk kehidupan di Bumi merupakan mikroorganisme dan atmosfer memiliki sejumlah besar karbondioksida. Makhluk hidup ketika itu sangat mungkin memanfaatkan hidrogen atau hidrogen sulfida--bukan air--sebagai sumber elektron. Cyanobacteria muncul kemudian, sekitar 3.000 juta tahun silam, dan secara drastis mengubah Bumi ketika mereka mulai mengoksigenkan atmosferpada sekitar 2.400 juta tahun silam. Atmosfer baru ini memungkinkan evolusi kehidupan kompleks seperi protista. Pada akhirnya, tidak kurang dari satu miliar tahun silam, salah satu protista membentuk hubungan simbiosis dengan satu cyanobacteria dan menghasilkan nenek moyang dari seluruh tumbuhan dan alga. Kloroplas pada Tumbuhan modern merupakan keturunan dari cyanobacteria yang bersimbiosis ini.
Perangkat fotosintesis
[sunting]Pigmen
Proses fotosintesis tidak dapat berlangsung pada setiap sel, tetapi hanya pada sel yang mengandung pigmen fotosintetik. Sel yang tidak mempunyai pigmen fotosintetik ini tidak mampu melakukan proses fotosintesis. Pada percobaanJan Ingenhousz, dapat diketahui bahwa intensitas cahaya memengaruhi lajufotosintesis pada tumbuhan. Hal ini dapat terjadi karena perbedaan energi yang dihasilkan oleh setiap spektrum cahaya. Di samping adanya perbedaan energi tersebut, faktor lain yang menjadi pembeda adalah kemampuan daun dalam menyerap berbagai spektrum cahaya yang berbeda tersebut. Perbedaan kemampuan daun dalam menyerap berbagai spektrum cahaya tersebut disebabkan adanya perbedaan jenis pigmen yang terkandung pada jaringan daun.
Di dalam daun terdapat mesofil yang terdiri atas jaringan bunga karang dan jaringan pagar. Pada kedua jaringan ini, terdapat kloroplas yang mengandung pigmen hijau klorofil. Pigmen ini merupakan salah satu dari pigmen fotosintesis yang berperan penting dalam menyerap energi matahari.
Dari semua radiasi Matahari yang dipancarkan, hanya panjang gelombang tertentu yang dimanfaatkan tumbuhan untuk proses fotosintesis, yaitu panjang gelombang yang berada pada kisaran cahaya tampak (380-700 nm). Cahaya tampak terbagi atas cahaya merah (610 - 700 nm), hijau kuning (510 - 600 nm), biru (410 - 500 nm), dan violet (< 400 nm). Masing-masing jenis cahaya berbeda pengaruhnya terhadap fotosintesis. Hal ini terkait pada sifatpigmen penangkap cahaya yang bekerja dalam fotosintesis. Pigmen yang terdapat pada membran grana menyerap cahaya yang memiliki panjang gelombang tertentu. Pigmen yang berbeda menyerap cahaya pada panjang gelombang yang berbeda. Kloroplasmengandung beberapa pigmen. Sebagai contoh, klorofil a terutama menyerap cahaya biru-violet dan merah, sementara klorofil b menyerap cahaya biru dan oranye dan memantulkan cahaya kuning-hijau. Klorofil a berperan langsung dalam reaksi terang, sedangkan klorofil b tidak secara langsung berperan dalam reaksi terang. Proses absorpsi energi cahaya menyebabkan lepasnya elektron berenergi tinggi dari klorofil a yang selanjutnya akan disalurkan dan ditangkap oleh akseptor elektron. Proses ini merupakan awal dari rangkaian panjang reaksi fotosintesis.
[sunting]Kloroplas
Kloroplas terdapat pada semua bagian tumbuhan yang berwarna hijau, termasuk batang danbuah yang belum matang. Di dalam kloroplas terdapat pigmen klorofil yang berperan dalam proses fotosintesis. Kloroplas mempunyai bentuk seperti cakram dengan ruang yang disebut stroma. Stroma ini dibungkus oleh dua lapisan membran. Membran stroma ini disebut tilakoid, yang didalamnya terdapat ruang-ruang antar membran yang disebut lokuli. Di dalam stroma juga terdapat lamela-lamela yang bertumpuk-tumpuk membentuk grana (kumpulan granum). Granum sendiri terdiri atas membran tilakoid yang merupakan tempat terjadinya reaksi terang dan ruang tilakoid yang merupakan ruang di antara membran tilakoid. Bila sebuah granum disayat maka akan dijumpai beberapakomponen seperti protein, klorofil a, klorofil b, karetonoid, dan lipid. Secara keseluruhan, stroma berisi protein, enzim, DNA, RNA, gula fosfat, ribosom, vitamin-vitamin, dan juga ion-ion logam seperti mangan (Mn), besi (Fe), maupun tembaga (Cu). Pigmen fotosintetik terdapat pada membran tilakoid. Sedangkan, pengubahan energi cahaya menjadi energi kimia berlangsung dalam tilakoid dengan produk akhir berupa glukosa yang dibentuk di dalam stroma. Klorofil sendiri sebenarnya hanya merupakan sebagian dari perangkat dalam fotosintesis yang dikenal sebagai fotosistem.
[sunting]Fotosistem
Fotosistem adalah suatu unit yang mampu menangkap energi cahaya Matahari yang terdiri dari klorofil a, kompleks antena, dan akseptor elektron. Di dalam kloroplas terdapat beberapa macam klorofil dan pigmen lain, seperti klorofil a yang berwarna hijau muda, klorofil b berwarna hijau tua, dan karoten yang berwarna kuning sampai jingga. Pigmen-pigmen tersebut mengelompok dalam membran tilakoid dan membentuk perangkat pigmen yang berperan penting dalam fotosintesis.
Klorofil a berada dalam bagian pusat reaksi. Klorofil ini berperan dalam menyalurkan elektron yang berenergi tinggi ke akseptor utama elektron. Elektron ini selanjutnya masuk ke sistem siklus elektron. Elektron yang dilepaskan klorofil a mempunyai energitinggi sebab memperoleh energi dari cahaya yang berasal dari molekul perangkat pigmen yang dikenal dengan kompleks antena.
Fotosistem sendiri dapat dibedakan menjadi dua, yaitu fotosistem I dan fotosistem II. Pada fotosistem I ini penyerapan energi cahaya dilakukan oleh klorofil a yang sensitif terhadap cahaya dengan panjang gelombang 700 nm sehingga klorofil a disebut juga P700. Energi yang diperoleh P700 ditransfer dari kompleks antena. Pada fotosistem II penyerapan energi cahaya dilakukan oleh klorofil a yang sensitif terhadap panjang gelombang 680 nm sehingga disebut P680. P680 yang teroksidasi merupakan agen pengoksidasi yang lebih kuat daripada P700. Dengan potensial redoks yang lebih besar, akan cukup elektron negatif untuk memperoleh elektron dari molekul-molekul air.
[sunting]Membran dan organel fotosintesis
Protein yang mengumpulkan cahaya untuk fotosintesis dilengkapi dengan membran sel. Cara yang paling sederhana terdapat pada bakteri, yang mana protein-protein ini tersimpan di dalam mebran plasma. Akan tetapi, membran ini dapat terlipat dengan rapat menjadi lembaran silinder yang disebut tilakoid, atau terkumpul menjadi vesikel yang disebut membran intrakitoplasma. Struktur ini dapat mengisi sebagian besar bagian dalam sel, menjadikan membran itu memiliki area permukaan yang luas dan dengan demikian meningkatkan jumlah cahaya yang dapat diserap oleh bakteri.
Pada Tumbuhan dan alga, fotosintesis terjadi di organel yang disebut kloroplas. Satu sel tumbuhan biasanya memiliki sekitar 10 sampai 100 kloroplas. Kloroplas ditutupi oleh suatu membran. Membran ini tersusun oleh membran dalam fosfolipid, membran luar fosfolipid, dan membran antara kedua membran itu. Di dalam membran terdapat cairan yang disebut stroma. Stroma mengandung tumpukan (grana) tilakoid, yang merupakan tempat berlangsungnya fotosintesis. Tilakoid berbentuk cakram datar, dilapisi oleh membran dengan lumen atau ruang tilakoid di dalamnya. Tempat terjadinya fotosintesis adalah membran tilakoid, yang mengandung kompleks membran integral dan kompleks membran periferal, termasuk membran yang menyerap energi cahaya, yang membentuk fotosistem.
Tumbuhan menyerap cahaya menggunakan pigmen klorofil, yang merupakan alasan kenapa sebagian besar tumbuhan memiliki warna hijau. Selain klorofil, tumbuhan juga menggunakan pigmen seperi karoten dan xantofil. Alga juga menggunakan klorofil, namun memiliki beragam pigmen lainnya, misalnya fikosianin, karoten, dan xantofil pada alga hijau, fikoeritrin pada alga merah (rhodophyta) dan fukoksantin pada alga cokelat dan diatom yang menghasilkan warna yang beragam pula.
Pigmen-pigmen ini terdapat pada tumbuhan dan alga pada protein antena khusus. Pada protein tersebut semua pigmen bekerja bersama-sama secara teratur. Protein semacam itu disebut kompleks panen cahaya.
Walaupun semua sel pada bagian hijau pada tumbuhan memiliki kloroplas, sebagian besar energinya diserap di dalam daun. Sel pada jaringan dalam daun, disebut mesofil, dapat mengandung antara 450.000 sampai 800.000 kloroplas pada setiap milimeter persegi pada daun. Permukaan daun secara sergam tertutupi oleh kutikula lilin yang tahan air yang melindungi daun dari penguapan yang berlebihan dan mengurangi penyerapan sinar biru atau ultraviolet untuk mengurangi pemanasan. Lapisan epidermis yang tembus pandang memungkinkan cahaya untuk masuk melalui sel mesofil palisade tempat sebagian besar fotosintesis berlangsung.
[sunting]Fotosintesis pada tumbuhan
Tumbuhan bersifat autotrof. Autotrof artinya dapat mensintesis makanan langsung dari senyawa anorganik. Tumbuhan menggunakan karbon dioksida dan air untuk menghasilkan gula dan oksigen yang diperlukan sebagai makanannya. Energi untuk menjalankan proses ini berasal dari fotosintesis. Berikut ini adalah persamaan reaksi fotosintesis yang menghasilkan glukosa:
Glukosa dapat digunakan untuk membentuk senyawa organik lain seperti selulosa dan dapat pula digunakan sebagai bahan bakar. Proses ini berlangsung melalui respirasi seluler yang terjadi baik pada hewan maupun tumbuhan. Secara umum reaksi yang terjadi pada respirasi seluler berkebalikan dengan persamaan di atas. Pada respirasi, gula (glukosa) dan senyawa lain akan bereaksi dengan oksigen untuk menghasilkan karbon dioksida, air, dan energi kimia.
Tumbuhan menangkap cahaya menggunakan pigmen yang disebut klorofil. Pigmen inilah yang memberi warna hijau pada tumbuhan. Klorofil terdapat dalam organel yang disebut kloroplas. klorofil menyerap cahaya yang akan digunakan dalam fotosintesis. Meskipun seluruh bagian tubuh tumbuhan yang berwarna hijau mengandung kloroplas, namun sebagian besar energi dihasilkan di daun. Di dalam daun terdapat lapisan sel yang disebut mesofil yang mengandung setengah juta kloroplas setiap milimeter perseginya. Cahaya akan melewati lapisan epidermis tanpa warna dan yang transparan, menuju mesofil, tempat terjadinya sebagian besar proses fotosintesis. Permukaan daun biasanya dilapisi oleh kutikula dari lilin yang bersifat anti air untuk mencegah terjadinya penyerapan sinar Matahari ataupun penguapan air yang berlebihan.
[sunting]Fotosintesis pada alga dan bakteri
Alga terdiri dari alga multiseluler seperti ganggang hingga alga mikroskopik yang hanya terdiri dari satu sel. Meskipun alga tidak memiliki struktur sekompleks tumbuhan darat, fotosintesis pada keduanya terjadi dengan cara yang sama. Hanya saja karena alga memiliki berbagai jenis pigmen dalam kloroplasnya, maka panjang gelombang cahaya yang diserapnya pun lebih bervariasi. Semua alga menghasilkan oksigen dan kebanyakan bersifat autotrof. Hanya sebagian kecil saja yang bersifat heterotrof yang berarti bergantung pada materi yang dihasilkan oleh organisme lain.
[sunting]Proses
Hingga sekarang fotosintesis masih terus dipelajari karena masih ada sejumlah tahap yang belum bisa dijelaskan, meskipun sudah sangat banyak yang diketahui tentang proses vital ini. Proses fotosintesis sangat kompleks karena melibatkan semua cabang ilmu pengetahuan alam utama, seperti fisika, kimia, maupun biologi sendiri.
Pada tumbuhan, organ utama tempat berlangsungnya fotosintesis adalah daun. Namun secara umum, semua sel yang memiliki kloroplas berpotensi untuk melangsungkan reaksi ini. Di organel inilah tempat berlangsungnya fotosintesis, tepatnya pada bagianstroma. Hasil fotosintesis (disebut fotosintat) biasanya dikirim ke jaringan-jaringan terdekat terlebih dahulu.
Pada dasarnya, rangkaian reaksi fotosintesis dapat dibagi menjadi dua bagian utama: reaksi terang (karena memerlukan cahaya) dan reaksi gelap (tidak memerlukan cahaya tetapi memerlukan karbon dioksida). Reaksi terang terjadi pada grana (tunggal: granum), sedangkan reaksi gelap terjadi di dalam stroma. Dalam reaksi terang, terjadi konversienergi cahaya menjadi energi kimia dan menghasilkan oksigen (O2). Sedangkan dalam reaksi gelap terjadi seri reaksi siklik yang membentuk gula dari bahan dasar CO2 dan energi (ATP dan NADPH). Energi yang digunakan dalam reaksi gelap ini diperoleh dari reaksi terang. Pada proses reaksi gelap tidak dibutuhkan cahaya Matahari. Reaksi gelap bertujuan untuk mengubah senyawa yang mengandung atom karbon menjadi molekul gula.
Organisme fotosintesis itu autotrof, yang berarti bahwa mereka menyimpan energi, mereka dapat menyintesis makanan langsung ari karbondioksida, air, dan menggunakan energi dari cahaya. Mereka menumbuhkannya sebagai bagian dari energi potensial mereka. Akan tetapi, tidak semua organisme menggunakan cahaya sebagai sumber energi untuk melaksanakan fotosintesis, karena fotoheterotrof menggunakan senyawa organik, dan bukan karbondioksida, sebagai sumber energi. Pada tumbuhan, alga, dan cyanobacteria, fotosintesis menghasilkan oksigen. Ini disebutfotosintesis oksigen. Walaupun ada beberapa perbedaan antara fotosintesis oksigen pada tumbuhan, alga, dan cyanobacteria, secara umum prosesnya cukup mirip pada organisme-organisme tersebut. Akan tetapi, ada beberapa jenis bakteri yang melakukanfotosintesis anoksigen, yang menyerap karbondioksida namun tidak menghasilkan oksigen.
Karbondioksida diubah menjadi gula dalam suatu proses yang disebut fiksasi karbon. Fiksasi karbon adalah reaksi redoks, jadi fotosintesis memerlukan sumber energi untuk melakukan proses ini, dan elektron yang diperlukan untuk mengubah karbondioksida menjadi karbohidrat, yang merupaan reaksi reduksi. Secara umum, fotosintesis adalah kebalikan dari respirasi sel, yang mana glukosa dan senyawa lainnya teroksidasi untuk menghasilkan karbondioksia, air, dan menghasilkan energi kimia. Namun, dua proses itu berlangsung melalui rangkaian reaksi kimia yang berbeda dan pada kompartemen sel yang berbeda.
Persamaan umum untuk fotosintesis adalah sebagai berikut:
Karbondioksida + donor elektron + energi cahaya → karbohidrat + donor elektron teroksidasi
Pada fotosintesis okesigen air adalah donor elektron dan, karena merupakan hidrolisis melepaskan oksigen, persamaan untuk proses ini adalah:
- 2n CO2 + 4n H2O + foton → 2(CH2O)n + 2n O2 + 2n H2O
- karbondioksida + air + energi cahaya → karbohidrat + oksigen + air
Seringkali 2n molekul air dibatalkan pada kedua pihak, sehingga menghasilkan:
- 2n CO2 + 2n H2O + foton → 2(CH2O)n + 2n O2
- karbondioksida + air + energi cahaya → karbohidrat + oksigen
Proses lainnya menggantikan senyawa lainnya (Seperti arsenit) dengan air pada peran suplai-elektron; mikroba menggunakan cahaya matahari untuk mengoksidasi arsenit menjadi arsenat: Persamaan untuk reaksinya adalah sebagai berikut:
- CO2 + (AsO33–) + foton → (AsO43–) + CO
- karbondioksida + arsenit + energi cahaya → arsenat + karbonmonoksida (digunakan untuk membuat senyawa lainnya dalam reaksi berikutnya)
Fotosintesis terjadi dalam dua tahap. Pada tahap pertama, reaksi terang atau reaksi cahaya menyerap energi cahaya dan menggunakannya untuk menghasilkan molekul penyimpan energi ATP dan NADPH. Pada tahap kedua, reaksi gelap menggunakan produk ini untuk menyerap dan mengurangi karondioksida.
Sebagian besar organisme yang melakukan fotosintesis untuk menghasilkan oksigen menggunakan cahaya nampak untuk melakukannya, meskipun setidaknya tiga menggunakan radiasi inframerah.
[sunting]Reaksi terang
Reaksi terang adalah proses untuk menghasilkanATP dan reduksi NADPH2. Reaksi ini memerlukan molekul air dan cahaya Matahari. Proses diawali dengan penangkapan foton olehpigmen sebagai antena.
Reaksi terang melibatkan dua fotosistem yang saling bekerja sama, yaitu fotosistem I dan II. Fotosistem I (PS I) berisi pusat reaksi P700, yang berarti bahwa fotosistem ini optimal menyerap cahaya pada panjang gelombang 700 nm, sedangkan fotosistem II (PS II) berisi pusat reaksi P680 dan optimal menyerap cahaya pada panjang gelombang 680 nm.
Mekanisme reaksi terang diawali dengan tahap dimana fotosistem II menyerap cahaya Matahari sehingga elektron klorofil pada PS II tereksitasi dan menyebabkan muatan menjadi tidak stabil. Untuk menstabilkan kembali, PS II akan mengambil elektron dari molekul H2O yang ada disekitarnya. Molekul air akan dipecahkan oleh ion mangan (Mn) yang bertindak sebagai enzim. Hal ini akan mengakibatkan pelepasan H+ di lumen tilakoid.
Dengan menggunakan elektron dari air, selanjutnya PS II akan mereduksi plastokuinon (PQ) membentuk PQH2. Plastokuinon merupakan molekul kuinon yang terdapat pada membran lipid bilayer tilakoid. Plastokuinon ini akan mengirimkan elektron dari PS II ke suatu pompa H+ yang disebut sitokrom b6-f kompleks. Reaksi keseluruhan yang terjadi di PS II adalah
Sitokrom b6-f kompleks berfungsi untuk membawa elektron dari PS II ke PS I dengan mengoksidasi PQH2 dan mereduksi protein kecil yang sangat mudah bergerak dan mengandung tembaga, yang dinamakan plastosianin (PC). Kejadian ini juga menyebabkan terjadinya pompa H+ dari stroma ke membran tilakoid. Reaksi yang terjadi pada sitokrom b6-f kompleks adalah
Elektron dari sitokrom b6-f kompleks akan diterima oleh fotosistem I. Fotosistem ini menyerap energi cahaya terpisah dari PS II, tapi mengandung kompleks inti terpisahkan, yang menerima elektron yang berasal dari H2O melalui kompleks inti PS II lebih dahulu. Sebagai sistem yang bergantung pada cahaya, PS I berfungsi mengoksidasi plastosianin tereduksi dan memindahkan elektron ke protein Fe-S larut yang disebut feredoksin. Reaksi keseluruhan pada PS I adalah:
Selanjutnya elektron dari feredoksin digunakan dalam tahap akhir pengangkutan elektron untuk mereduksi NADP+ dan membentuk NADPH. Reaksi ini dikatalisis dalam stroma oleh enzim feredoksin-NADP+ reduktase. Reaksinya adalah:
Ion H+ yang telah dipompa ke dalam membran tilakoid akan masuk ke dalam ATP sintase. ATP sintase akan menggandengkan pembentukan ATP dengan pengangkutan elektron dan H+ melintasi membran tilakoid. Masuknya H+ pada ATP sintase akan membuat ATP sintase bekerja mengubah ADP dan fosfat anorganik (Pi) menjadi ATP.[1] Reaksi keseluruhan yang terjadi pada reaksi terang adalah sebagai berikut:
[sunting]Skema Z
Pada tanaman, reaksi terang terjadi pada membran tilakoid di kloroplas dan menggunakan energi cahaya untuk menyintesis ATP dan NADPH. Reaksi terang memiliki dua bentuk: siklus dan nonsiklus. Pada reaksi nonsiklus, foton diserap pada kompleks antenafotosistem II penyerap cahaya oleh klorofil dan pigmen aksesoris lainnya. Ketika molekul klorofil pada inti pusat reaksi fotosistem II memperoleh energi eksitasi yang cukup dari pigmen antena yang berdekatan dengannya, satu elektron akan dipindahkan ke molekul penerima elektron, yaitu feopftin, melalui sebuah proses yang disebut pemisahan tenaga terfotoinduksi. Elektron ini dipindahkan melaluirangkaian transport elektron, yang disebut skema Z, yang pada awalnya berfungsi untuk menghasilkan potensi kemiosmosis di sepanjang membran. Satu enzim sintase ATP menggunakan potensi kemisomosis untuk menghasilkan ATP selama fotofosforilasi, sedangkan NADPH adalah produk dari reaksi redoks terminal pada skema Z. Elektron masuk ke molekul klorofil pada fofosistem II. Elektron ini tereksitasi karena cahaya yang diserap oleh fotosistem. Pembawa elektron kedua menerima elektron, yang lagi-lagi dilewatkan untuk menurunkan energi penerim elektron. Energi yang dihasilkan oleh penerima elektron digunakan untuk menggerakan ion hidrogen di sepanjang membran tilakoid sampai ke dalam lumen. Elektron digunakan untuk mereduksi koenzim NADP, yang memiliki fungsi pada reaksi terang. Reaksi siklus mirip dengan nonsiklus, namun berbeda pada bentuknya karena hanya menghasilkan ATP, dan tidak ada NADP (NADPH) tereduksi yang dihasilkan. Reaksi siklus hanya berlangsung pada fotosistem I. Setelah elektron dipindahkan dari fotosistem, elektron digerakkan melewati molekul penerima elektron dan dikembalikan ke fotosistem I, yang dari sanalah awalnya elektron dikeluarkan, sehingga reaksi ini diberi nama reaksi siklus.
[sunting]Fotolisis air
NADPH adalah agen pereduksi utama dalam kloroplas, menyediakan sumber elektron enerjik kepada reaksi lainnya. Produksinya meninggalkan klorofil dengan defisit elektron (teroksidasi), yang harus diperoleh dari beberapa agen pereduksi lainnya. Elektron yang hilang dari klorofil pada fotosistem I ini digantikan dari rangkaian transport elektron oleh plastosianin. Akan tetapi, karena fotosistem IImeliputi tahap pertama dari skema Z, sumber elektron eksternal siperlukan untuk mereduksi molekuk klorofil a-nya yang telah teroksidasi. Sumber elektron pada tanaman hijau dan fotosintesis cyanobacteria adalah air. Dua molekul air teroksidasi oleh oleh empat reaksi pemisahan-tenaga berturut-turut oleh fotosistem II untuk menghasilkan satu molekul oksigen diatom dan empat ionhidrogen; elektron yang dihasilkan pada tiap tahap dipindahkan ke residu tirosin redoks-aktif yang kemudian mereduksi spesies klorofila yang berpasangan yang telah terfotooksidasi yang disebut P680 yang berguna sebagai donor elektron primer (digerakkan oleh cahaya) pada pusat reaksi fotosistem II. Oksidasi air terkatalisasi pada fotosistem oleh fotosistem II oleh suatu struktur redoks-aktif yang mengandung empat ion mangan dan satu ion kalsium; kompleks evolusi oksigen ini mengikat dua molekul air dan menyimpan empat padanannya yang telah teroksidasi yang diperlukan untuk melakukan reaksi oksidasi air. Fotosistem II adalah satu-satunyaenzim biologi yang diketahui melaksanakan oksidasi air ini. Ion hidrogen berkontribusi terhadap potensi kemiosmosis transmembran yang berujung pada sintesis ATP. Oksigen adalah produk ampas dari reaksi cahaya, namun sebagian besar organisme di Bumi menggunakan oksigen untuk respirasi sel, termasuk organisme fotosintesis.[39][40]
[sunting]Reaksi gelap
Reaksi gelap pada tumbuhan dapat terjadi melalui dua jalur, yaitu siklus Calvin-Benson dan siklus Hatch-Slack. Pada siklus Calvin-Benson tumbuhan mengubah senyawa ribulosa 1,5 bisfosfat menjadi senyawa dengan jumlah atom karbon tiga yaitu senyawa 3-phosphogliserat. Oleh karena itulah tumbuhan yang menjalankan reaksi gelap melalui jalur ini dinamakan tumbuhan C-3. Penambatan CO2 sebagai sumber karbon pada tumbuhan ini dibantu oleh enzim rubisco. Tumbuhan yang reaksi gelapnya mengikuti jalur Hatch-Slack disebut tumbuhan C-4 karena senyawa yang terbentuk setelah penambatan CO2 adalah oksaloasetat yang memiliki empat atom karbon. Enzim yang berperan adalah phosphoenolpyruvate carboxilase.
[sunting]Siklus Calvin-Benson
Mekanisme siklus Calvin-Benson dimulai dengan fiksasi CO2oleh ribulosa difosfat karboksilase (RuBP) membentuk 3-fosfogliserat. RuBP merupakan enzim alosetrik yang distimulasi oleh tiga jenis perubahan yang dihasilkan dari pencahayaan kloroplas. Pertama, reaksi dari enzim ini distimulasi oleh peningkatan pH. Jika kloroplas dibericahaya, ion H+ ditranspor dari stroma ke dalam tilakoidmenghasilkan peningkatan pH stroma yang menstimulasi enzim karboksilase, terletak di permukaan luar membrantilakoid. Kedua, reaksi ini distimulasi oleh Mg2+, yang memasuki stroma daun sebagai ion H+, jika kloroplas diberi cahaya. Ketiga, reaksi ini distimulasi oleh NADPH, yang dihasilkan oleh fotosistem I selama pemberian cahaya.
Fiksasi CO2 ini merupakan reaksi gelap yang distimulasi oleh pencahayaan kloroplas. Fikasasi CO2 melewati proseskarboksilasi, reduksi, dan regenerasi. Karboksilasi melibatkan penambahan CO2 dan H2O ke RuBP membentuk dua molekul 3-fosfogliserat(3-PGA). Kemudian pada fase reduksi, gugus karboksil dalam 3-PGA direduksi menjadi 1 gugus aldehida dalam 3-fosforgliseradehida (3-Pgaldehida).
Reduksi ini tidak terjadi secara langsung, tapi guguskarboksil dari 3-PGA pertama-tama diubah menjadi ester jenis anhidrida asam pada asam 1,3-bifosfogliserat (1,3-bisPGA) dengan penambahan gugus fosfat terakhir dari ATP. ATP ini timbul dari fotofosforilasi dan ADP yang dilepas ketika 1,3-bisPGA terbentuk, yang diubah kembali dengan cepat menjadi ATP oleh reaksi fotofosforilasi tambahan. Bahan pereduksi yang sebenarnya adalah NADPH, yang menyumbang 2 elektron. Secara bersamaan, Pi dilepas dan digunakan kembali untuk mengubah ADP menjadi ATP.
Pada fase regenerasi, yang diregenerasi adalah RuBP yang diperlukan untuk bereaksi dengan CO2 tambahan yang berdifusi secarakonstan ke dalam dan melalui stomata. Pada akhir reaksi Calvin, ATP ketiga yang diperlukan bagi tiap molekul CO2 yang ditambat, digunakan untuk mengubah ribulosa-5-fosfat menjadi RuBP, kemudian daur dimulai lagi.
Tiga putaran daur akan menambatkan 3 molekul CO2 dan produk akhirnya adalah 1,3-Pgaldehida. Sebagian digunakan kloroplas untuk membentuk pati, sebagian lainnya dibawa keluar. Sistem ini membuat jumlah total fosfat menjadi konstan di kloroplas, tetapi menyebabkan munculnya triosafosfat di sitosol.[20] Triosa fosfat digunakan sitosol untuk membentuk sukrosa.[20][43]
[sunting]Siklus Hatch-Slack
Berdasarkan cara memproduksi glukosa, tumbuhan dapat dibedakan menjadi tumbuhan C3 dan C4.[44] Tumbuhan C3 merupakan tumbuhan yang berasal dari daerah subtropis.[44] Tumbuhan ini menghasilkanglukosa dengan pengolahan CO2 melalui siklus Calvin, yang melibatkan enzim Rubisco sebagai penambat CO2.[44]
Tumbuhan C3 memerlukan 3 ATP untuk menghasilkan molekul glukosa.[44] Namun, ATP ini dapat terpakai sia-sia tanpa dihasilkannya glukosa.[45] Hal ini dapat terjadi jika ada fotorespirasi, di mana enzim Rubisco tidak menambat CO2 tetapi menambat O2.[45]Tumbuhan C4 adalah tumbuhan yang umumnya ditemukan di daerahtropis.[45] Tumbuhan ini melibatkan dua enzim di dalam pengolahan CO2 menjadi glukosa.[45]
Enzim phosphophenol pyruvat carboxilase (PEPco) adalah enzim yang akan mengikat CO2 dari udara dan kemudian akan menjadioksaloasetat.[45] Oksaloasetat akan diubah menjadi malat.[45] Malat akan terkarboksilasi menjadi piruvat dan CO2.[45] Piruvat akan kembali menjadi PEPco, sedangkan CO2 akan masuk ke dalam siklus Calvin yang berlangsung di sel bundle sheath dan melibatkan enzim RuBP.[45] Proses ini dinamakan siklus Hatch Slack, yang terjadi di sel mesofil.[46] Dalam keseluruhan proses ini, digunakan 5 ATP.[46]
[sunting]Urutan dan kinetika
Proses forosintesis terjadi melalui empat tahap:[6]
Tahap | Penjelasan | Skala waktu |
---|---|---|
1 | Perpindahan energi pada klorofil antena (membran tilakoid) | femtodetiksampai pikodetik |
2 | Perpindahan elektorn pada reaksi fotokimia (membran tilakoid) | pikodetik sampainanodetik |
3 | Rantai perpindahan elektron dan sintesis ATP (membran tilakoid) | mikrodetiksampai millidetik |
4 | Fiksasi karbon dan ekspor produk stabil | millidetik sampaidetik |
[sunting]Efisiensi
Tumbuhan biasanya mengubah cahaya menjadi energi kimia dengan efisiensi fotosintesis sekitar 3–6%.[47] Efisiensi fotosintesis yang sebenarnya, beragam tergantung pada frekuensi cahaya yang diserap, suhu dan jumlah karbondioksida di atmosfer, dan dapat bervariasi mulai dari 0.1% sampai 8%.[48] Sebagai perbadningan, panel surya mengubah cahaya menjadi energi listrik dengan efisiensi ekitar 6-20 % untuk panel yang diproduksi massal, dan di atas 40% untuk panel laboratoium.
[sunting]Evolusi
Sistem fotosintesis awal, seperti misalnya pada bakteri sulfur hijau dan bakteri sulfur ungu serta baktero nonsulfur hujau dan bakteri nonsulfur ungu, dipercaya sebagai anoksigenik, menggunakan beragam molekul sebagai donor elektron. Bakteri sulfur hijau dan ungu dipercaya menggunakan hidrogen dan sulfur sebagai donor elektron. Bakteri nonsulfur hijau menggunakan beragam asam amino danasam organik lainnya. Bakteri nonsulfur ungu menggunakan beragam molekuk organik nonrinci. Penggunaan molekuk-molekul ini konsisten dengan bukti geologi bahwa atmosfer sangat terkurangi pada masa itu.[rujukan?]
Fosil yang dipercaya sebagai organisme fotosintesis filamen diperirakan berasal dari 3,4 miliar tahun silam.[49][50]
Sumber utama oksigen di atmosfer adalah fotosintesis oksigen, dan kemunculan pertamanya seringkali disebut sebagai katastropi oksigen. Bukti geologis menunjukkan bahwa fotosintesis oksigen, seperti misalnya pada cyanobacteria, menjadi penting selama eraPaleoproterozoikum sekitar 2 miliar tahun silam. Fotosintesis modern pada Tumbuhan dan sebagian besar prokariota fotosintesis menghasilkan oksigen. Fotosintesis oksigen menggunakan air sebagai donor elektron, yang teroksidasi menjadi oksigen molekuker (O2) di pusat reaksi fotosintesis.
[sunting]Simbiosis dan asal mula kloroplas
Beberapa kelompok hewan membentuk hubungan simbiosis dengan alga fotosintesis. Ini banyak terdapat pada koral, spons, dananemon laut. Diperkirakan bahwa ini adalah akibat dari rangka tubuh mereka yang cukup sederhana dan area permukaan tubuh yang luas dibandingkan volume tubuh mereka.[51] Selain itu, beberapa moluska, yaitu Elysia viridis dan Elysia chlorotica, juga memiliki hubungan simbiosis dengan kloroplas yang mereka ambil dari alga yang mereka makan dan kemudian disimpan di dalam tubuh mereka. Ini memungkinkan moluska bertahan hidup hanya dengan melakukan fotosintesis selama beberapa bulan pada suatu waktu.[52][53] Beberapa gen dari nukleus sel Tumbuhan ini ditransfer ke siput sehingga kloroplas dapat disuplai dengan protein yang mereka gunakan untuk bertahan hidup.[54]
Bentuk simbiosis yang bahkan lebih dekat dapat menjelaskan asal usul kloroplas. Kloroplas mungkin memiliki banyak kesamaaan dengan bakteri fotosintesis, termasuk kromosom bundar, ribosom berjenis prokariota, dan protein serupa di pusat reaksi fotosintesis.[55][56] Teori endosimbiotik menunjukkan bahwa bakteri fotosintesis didapat (melalui endositosis) oleh sel Eukariota untuk membentuk sel Tumbuhan awal. Dengan demikian, kloroplas kemungkinan merupakan bakteri fotosintesis yang beradaptasi untuk hidup di dalam sel Tumbuhan. Seperti mitokondria, kloroplas masih memiliki DNA mereka sendiri, terpisah dari DNA nukleus pada sel inang Tumbuhan mereka dan gen dalam DNA kloroplas ini mirip dengan yang terdapat pada cyanobacteria.[57] DNA di kloroplas menyandi untuk protein redoks seperti pusat reaksi fotosintesis. Hipotesis CoRR mengusulkan bahwa lokasi Co-lokasi ni diperlukan untuk Regulasi Redoks.
[sunting]Cyanobacteria dan evolus fotosintesis
Kapasitas biokimia untuk menggunakan air sebagai sumber elektron dalam fotosintesis berevolusi sekali, pada nenek moyang bersamadari cyanobacteria yang masih ada. Rekaman geologi mengindikasikan bahwa peritiwa perubahan ini terjadi pada awal sejarah Bumi, setidaknya 2450–2320 juta tahun silam, bahkan diperkirakan jauh lebih awal dari itu.[58] Bukti yang tersedia dari studi geologi mengenaibatu sedimen Archean (>2500 juta tahun silam) mengindikasikan bahwa kehidupan tersebut ada sekitar 3500 juta tahun lalu, namun pertanyaan mengenai kapan fotosintesis oksigen berevolusi masih belum terjawab. Jendela patologi yang jelas untuk evolusicyanobacteria terbuka sekitar 200 juta tahun silam, mengungapkan biota bakteri biru-hijau yang sudah beragam. Cyanobacteria tetap menjadi produsen primer utama di sepanjang masa Eon Pretozoikum (2500–543 juta tahun silam), sebagian karena struktur redoks di laut lebih memudahkan fotoautotrof yang mampu melakukan fiksasi nirogen.[rujukan?] Alga hijau mengikuti hijau-biru sebagai produsen utama di rak kontinental dekat dengan akhir masa Pretozoikum, namun hanya dengan radiasi dinoflagelata, kokolitoforid, dan diatompada masa Messozoikum (251-65 juta tahun silam) produksi primer pada perairan tonjolan kelautan mulai memiliki bentuk modernnya. Cyanobacteria tetap menjadi penting bagi ekosistem laut sebagai produsen utama dalam pilin samudra, sebagai agen fiksasi nitrogen biologis, dan, dalam bentuk yang termodifikasi, sebagai plastid alga laut.[59]
Sebuah studi tahun 2010 oleh para peneliti di Universitas Tel Aviv menemukan bahwa hornet oriental (Vespa orientalis) mengubah cahaya matahari menjadi energi listrik menggunakan suatu pigmen yang disebut xantopterin. Ini merupakan bukti ilmiah pertama mengenai anggota kerajaan hewan yang melakukan fotosintesis.[60]
[sunting]Faktor penentu laju fotosintesis
Proses fotosintesis dipengaruhi beberapa faktor yaitu faktor yang dapat memengaruhi secara langsung seperti kondisi lingkungan maupun faktor yang tidak memengaruhi secara langsung seperti terganggunya beberapa fungsi organ yang penting bagi proses fotosintesis.[1] Proses fotosintesis sebenarnya peka terhadap beberapa kondisi lingkungan meliputi kehadiran cahaya Matahari, suhulingkungan, konsentrasi karbondioksida (CO2).[1] Faktor lingkungan tersebut dikenal juga sebagai faktor pembatas dan berpengaruh secara langsung bagi laju fotosintesis.[61]
Faktor pembatas tersebut dapat mencegah laju fotosintesis mencapai kondisi optimum meskipun kondisi lain untuk fotosintesis telah ditingkatkan, inilah sebabnya faktor-faktor pembatas tersebut sangat memengaruhi laju fotosintesis yaitu dengan mengendalikan laju optimum fotosintesis.[61] Selain itu, faktor-faktor seperti translokasi karbohidrat, umur daun, serta ketersediaan nutrisi memengaruhi fungsi organ yang penting pada fotosintesis sehingga secara tidak langsung ikut memengaruhi laju fotosintesis.[62]
Berikut adalah beberapa faktor utama yang menentukan laju fotosintesis[62]:
- Intensitas cahaya. Laju fotosintesis maksimum ketika banyak cahaya.
- Konsentrasi karbon dioksida. Semakin banyak karbon dioksida di udara, makin banyak jumlah bahan yang dapt digunakan tumbuhan untuk melangsungkan fotosintesis.
- Suhu. Enzim-enzim yang bekerja dalam proses fotosintesis hanya dapat bekerja pada suhu optimalnya. Umumnya laju fotosintensis meningkat seiring dengan meningkatnya suhu hingga batas toleransi enzim.
- Kadar air. Kekurangan air atau kekeringan menyebabkan stomata menutup, menghambat penyerapan karbon dioksida sehingga mengurangi laju fotosintesis.
- Kadar fotosintat (hasil fotosintesis). Jika kadar fotosintat seperti karbohidrat berkurang, laju fotosintesis akan naik. Bila kadar fotosintat bertambah atau bahkan sampai jenuh, laju fotosintesis akan berkurang.
- Tahap pertumbuhan. Penelitian menunjukkan bahwa laju fotosintesis jauh lebih tinggi pada tumbuhan yang sedang berkecambah ketimbang tumbuhan dewasa. Hal ini mungkin dikarenakan tumbuhan berkecambah memerlukan lebih banyakenergi dan makanan untuk tumbuh.
[sunting]Intensitas cahaya (pancaran), panjang gelombang dan suhu
Pada awal abad ke-120, Frederick Frost Blackman bersama dengan Albert Einstein menyelidiki pengaruh intensitas cahaya (pemancaran) dan suhu terhadap tingkat asimilasi karbon.
- Pada suhu tetap, tingkat asimilasi karbon beragam dengan pemancaran, pada awalnya meningkat seiring peningkatan pemancaran. Akan tetapi, pada tingkat pemancaran yang lebih tinggi, hubungan ini tidak berlangsung lama dan tingkat asimilasi karbon menjadi konstan.
- Pada pemancaran tetap, tingkat asimilasi karbon meningkat seiring suhu meningkat pada cakupan terbatas. Peranguh ini dapat dilihat hanya pada tingkat pemancaran yang tinggi. Pada pemancaran yang rendah, peningkatan suhu hanya memberikan sedikit pengaruh terhadap tingkat asimilasi karbon.
Dua eksperimen ini menggambarkan poin penting: Pertama, dari penelitian ini diketahui bahwa, secara umum, reaksi fotokimia tidak dipengaruhi oleh suhu. Akan tetapi, percobaan ini menunjukkan dengan jelas bahwa suhu mempengaruhi tingkat asimilasi karbon, jadi pasti ada dua rangkaian reaksi pada proses lengkap asimilasi karbon. Ini adalah tahap 'fotokimia' bergantung cahaya dan tahapbergantung suhu tapi tak bergantung udara. Yang kedua, percobaan Blackman menunjukkan konsep faktor pembatas. Faktor pembatas lainnya adalah panjang gelombang cahaya. Cyanobacteria, yang hidup beberapa meter di bawah tanah tidak dapat memperoleh panjang gelombang yang tepat yang diperlukan untuk menghasilkan pemisahan bertenaga fotoinduksi pada pigmen fotosintesis konvensional. Untuk mengatasi permasalahan ini, serangkaian protein dengan pigmen-pigmen berbeda mengelilingi pusat reaksi. Unit ini disebut fikobilisome.
[sunting]Tingkat karbondioksi dan fotorespirasi
Ketika konsentrasi karbondioksi meningkat, tingkat yang mana gula dihasilkan oleh reaksi bergantung cahaya meningkat hingga dibatasi oleh faktor-faktor lainnya. RuBisCO, enzim yang mengkat karbondioksida pada reaksi bebas cahaya, memiliki afinitas pengikatan untuk karbon dan oksigen. Ketika konsentrasi karbondioksida tinggi, RuBisCO akan memfiksasi karbondioksida. Akan tetapi, jika konsentrasi karbondioksida rendah, RuBisCO akan mengikat oksigen dan bukan karbondioksida. Proses ini, yang dsiebutfotorespirasi, menggunakan energi, tapi tidak menghasilkan gula.
Aktivitas oksigenase RuBisCO tidak menguntungkan bagi Tumbuhan karena beberapa alasan berikut:
- Salah satu produk aktivitas oksigenasi adalah fosfoglikolat (2 karbon) dan bukannya 3-fosfogliserat (3 karbon). Fosfoglikolat tidak dapat dimetabolisme oleh siklus Calvin-Benson dan menunjukkan karbon yang hilang dari sklus tersebut. Aktivitas oksigenasi yang tinggi, dengan demikian, menguras gula yang diperlukan untuk mengolah kembali ribulose 5-bisfosfat dan untuk keberlangsungan siklus Calvin-Benson.
- Fosfoglikolat dimetabolisme dengan cepat menjadi glikolat yang beracun bagi Tumbuhan pada konsentrasi yang tinggi. Ini menghambat fotosintesis.
- Menyimpan Glikolat secara energi merupakan proses yang mahal yang menggunakan jalur glikolat, dan hanya 75% dari karbon yang dikembalikan pada siklus Calvin-Benson sebagai 3-fosfogliserat. Reaksi ini juga menghasilkan ammonia (NH3), yang dapatberdifusi keluar dari Tumbuhan, berujung pada hilangnya nitrogen.
-
- Ringkasan sederhananya adalah sebagai berikut:
-
-
- 2 glikolat + ATP → 3-fosfogliserat + karbondioksida + ADP + NH3
-
Penggunaan jalur untuk produk dari aktivitas oksigenase RuBisCO oxygenase lebih dikenal sebagai fotorespirasi, karena dicirikan dengan konsumsi oksigen bergantung pada cahaya dan pelepasan karbondioksida.